DocumentCode
487830
Title
Identification of State-Space Parameters in the Presence of Uncertain Nuisance Parameters
Author
Garner, John P. ; Spall, James C.
Author_Institution
Computational Engineering, Inc., 14504 Greenview Drive, Suite 500, Laurel, Maryland 20708
fYear
1989
fDate
21-23 June 1989
Firstpage
1226
Lastpage
1230
Abstract
A methodology is presented to account for the uncertainty in maximum likelihood estimates of state space parameters in the presence of uncertain nuisance parameters. The technique uses the asymptotic normality of the uncertainty in the estimates and the implicit function theorem to determine a correction to the estimate uncertainty evaluated from the Fisher information matrix. Efficient evaluation of the correction using Kalman filters is discussed and a numerical example for the X-22A aircraft is presented.
Keywords
Aircraft; Covariance matrix; Laboratories; Maximum likelihood estimation; Monte Carlo methods; Parameter estimation; Physics; State estimation; State-space methods; Uncertainty;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 1989
Conference_Location
Pittsburgh, PA, USA
Type
conf
Filename
4790376
Link To Document