• DocumentCode
    48915
  • Title

    Bayesian Texture and Instrument Parameter Estimation From Blurred and Noisy Images Using MCMC

  • Author

    Vacar, Cornelia ; Giovannelli, Jean-Francois ; Berthoumieu, Yannick

  • Author_Institution
    IMS Lab., Talence, France
  • Volume
    21
  • Issue
    6
  • fYear
    2014
  • fDate
    Jun-14
  • Firstpage
    707
  • Lastpage
    711
  • Abstract
    This letter addresses an estimation problem based on blurred and noisy observations of textured images. The goal is jointly estimating the 1) image model parameters, 2) parametric point spread function (semi-blind deconvolution) and 3) signal and noise levels. It is an intricate problem due to the data model non-linearity w.r.t. these parameters. We resort to an optimal estimation strategy based on Mean Square Error, yielding the best (non-linear) estimate, namely the Posterior Mean. It is numerically computed using a Monte Carlo Markov Chain algorithm: Gibbs loop including a Random Walk Metropolis-Hastings sampler. The novelty is double: i) addressing this fully parametric threefold problem never tackled before through an optimal strategy and ii) providing a theoretical Fisher information-based analysis to anticipate estimation accuracy and compare with numerical results.
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; deconvolution; image texture; mean square error methods; nonlinear estimation; optical transfer function; Bayesian texture; Gibbs loop; MCMC; Monte Carlo Markov Chain algorithm; blurred observations; data model nonlinearity; estimation accuracy levels; image model parameters; instrument parameter estimation problem; mean square error; noise levels; noisy observations; nonlinear estimate; optimal estimation strategy; parametric point spread function; posterior mean; random walk metropolis-hastings sampler; semiblind deconvolution; signal levels; textured images; theoretical Fisher information-based analysis; Adaptation models; Deconvolution; Discrete Fourier transforms; Estimation; Noise level; Signal to noise ratio; Bayes; myopic deconvolution; parameter estimation; sampling; texture;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2014.2313274
  • Filename
    6777552