DocumentCode
48915
Title
Bayesian Texture and Instrument Parameter Estimation From Blurred and Noisy Images Using MCMC
Author
Vacar, Cornelia ; Giovannelli, Jean-Francois ; Berthoumieu, Yannick
Author_Institution
IMS Lab., Talence, France
Volume
21
Issue
6
fYear
2014
fDate
Jun-14
Firstpage
707
Lastpage
711
Abstract
This letter addresses an estimation problem based on blurred and noisy observations of textured images. The goal is jointly estimating the 1) image model parameters, 2) parametric point spread function (semi-blind deconvolution) and 3) signal and noise levels. It is an intricate problem due to the data model non-linearity w.r.t. these parameters. We resort to an optimal estimation strategy based on Mean Square Error, yielding the best (non-linear) estimate, namely the Posterior Mean. It is numerically computed using a Monte Carlo Markov Chain algorithm: Gibbs loop including a Random Walk Metropolis-Hastings sampler. The novelty is double: i) addressing this fully parametric threefold problem never tackled before through an optimal strategy and ii) providing a theoretical Fisher information-based analysis to anticipate estimation accuracy and compare with numerical results.
Keywords
Bayes methods; Markov processes; Monte Carlo methods; deconvolution; image texture; mean square error methods; nonlinear estimation; optical transfer function; Bayesian texture; Gibbs loop; MCMC; Monte Carlo Markov Chain algorithm; blurred observations; data model nonlinearity; estimation accuracy levels; image model parameters; instrument parameter estimation problem; mean square error; noise levels; noisy observations; nonlinear estimate; optimal estimation strategy; parametric point spread function; posterior mean; random walk metropolis-hastings sampler; semiblind deconvolution; signal levels; textured images; theoretical Fisher information-based analysis; Adaptation models; Deconvolution; Discrete Fourier transforms; Estimation; Noise level; Signal to noise ratio; Bayes; myopic deconvolution; parameter estimation; sampling; texture;
fLanguage
English
Journal_Title
Signal Processing Letters, IEEE
Publisher
ieee
ISSN
1070-9908
Type
jour
DOI
10.1109/LSP.2014.2313274
Filename
6777552
Link To Document