• DocumentCode
    489776
  • Title

    The Stabilization of a Linearized Self-Excited Wave Equation by an Energy Absorbing Boundary

  • Author

    Sarhangi, G.R. ; Najafi, M. ; Wang, H.

  • Author_Institution
    Department of Mathematics and Statistics, The Wichita State University, Wichita, KS 67208-1595
  • fYear
    1992
  • fDate
    24-26 June 1992
  • Firstpage
    2153
  • Lastpage
    2155
  • Abstract
    We study the linearised self-excited wave equation xtt - ¿ x-P(x) xt=0, where P(x)¿0, P(x) L¿(¿), in a bounded domain ¿ ¿ Rn with smooth boundary ¿ where boundary damping is present. Considering the partition {¿+, ¿-} of the boundary ¿ on which x=0 on ¿, and un+ Kut + Lu= 0, on ¿, we find two different bounds for P such that the energy decays exponentially in the energy space as t tends to infinity (Here we assume ¿+ ¿ ¿- = ¿ for n ≫ 3). Both bounds depend on ¿ (The domain of wave equation in Rn, n ¿ 1). The second bound also depends on the feed-back functions K,L L¿(¿+) or more precisely depends on a positive function k(x) L¿(¿+) which determines K and L on the partition ¿+.
  • Keywords
    Chromium; Damping; H infinity control; Neodymium; Partial differential equations;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1992
  • Conference_Location
    Chicago, IL, USA
  • Print_ISBN
    0-7803-0210-9
  • Type

    conf

  • Filename
    4792512