DocumentCode
489776
Title
The Stabilization of a Linearized Self-Excited Wave Equation by an Energy Absorbing Boundary
Author
Sarhangi, G.R. ; Najafi, M. ; Wang, H.
Author_Institution
Department of Mathematics and Statistics, The Wichita State University, Wichita, KS 67208-1595
fYear
1992
fDate
24-26 June 1992
Firstpage
2153
Lastpage
2155
Abstract
We study the linearised self-excited wave equation xtt - ¿ x-P(x) xt =0, where P(x)¿0, P(x) L¿(¿), in a bounded domain ¿ ¿ Rn with smooth boundary ¿ where boundary damping is present. Considering the partition {¿+ , ¿- } of the boundary ¿ on which x=0 on ¿, and un + Kut + Lu= 0, on ¿, we find two different bounds for P such that the energy decays exponentially in the energy space as t tends to infinity (Here we assume ¿+ ¿ ¿- = ¿ for n ≫ 3). Both bounds depend on ¿ (The domain of wave equation in Rn, n ¿ 1). The second bound also depends on the feed-back functions K,L L¿(¿+ ) or more precisely depends on a positive function k(x) L¿(¿+ ) which determines K and L on the partition ¿+ .
Keywords
Chromium; Damping; H infinity control; Neodymium; Partial differential equations;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 1992
Conference_Location
Chicago, IL, USA
Print_ISBN
0-7803-0210-9
Type
conf
Filename
4792512
Link To Document