• DocumentCode
    490289
  • Title

    Inductive Inference of Invariant Subspaces

  • Author

    Lemmon, Michael

  • Author_Institution
    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
  • fYear
    1993
  • fDate
    2-4 June 1993
  • Firstpage
    1219
  • Lastpage
    1223
  • Abstract
    This paper shows that inductive inference protocols can learn invariant linear subspaces, used in the stabilization of variable structure systems, after a finite number of failed oracle queries. It is further shown that this convergence bound scales in a polynomial manner with the system´s state space dimension.
  • Keywords
    Convergence; Eigenvalues and eigenfunctions; Equations; Inference algorithms; Iterative algorithms; Machine learning algorithms; Protocols; Symmetric matrices; Variable structure systems; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1993
  • Conference_Location
    San Francisco, CA, USA
  • Print_ISBN
    0-7803-0860-3
  • Type

    conf

  • Filename
    4793062