DocumentCode
4903
Title
A Discontinuous Galerkin Time Domain Framework for Periodic Structures Subject to Oblique Excitation
Author
Miller, Nicholas C. ; Baczewski, A.D. ; Albrecht, John D. ; Shanker, Balasubramaniam
Author_Institution
Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA
Volume
62
Issue
8
fYear
2014
fDate
Aug. 2014
Firstpage
4386
Lastpage
4391
Abstract
A nodal discontinuous Galerkin (DG) method is derived for the analysis of time-domain (TD) scattering from doubly periodic PEC/dielectric structures under oblique interrogation. Field transformations are employed to elaborate a formalism that is free from any issues with causality that are common when applying spatial periodic boundary conditions simultaneously with incident fields at arbitrary angles of incidence. An upwind numerical flux is derived for the transformed variables, which retains the same form as it does in the original Maxwell problem for domains without explicitly imposed periodicity. This, in conjunction with the amenability of the DG framework to non-conformal meshes, provides a natural means of accurately solving the first order TD Maxwell equations for a number of periodic systems of engineering interest. Results are presented that substantiate the accuracy and utility of our method.
Keywords
Galerkin method; Maxwell equations; electromagnetic wave scattering; periodic structures; time-domain analysis; dielectric structures; discontinuous Galerkin time domain framework; doubly periodic PEC structures; first order TD Maxwell equations; oblique excitation; oblique interrogation; spatial periodic boundary conditions; time domain scattering; Boundary conditions; Dielectrics; Maxwell equations; Periodic structures; Slabs; Time-domain analysis; Vectors; Discontinuous Galerkin (DG) methods; periodic structures; time domain analysis;
fLanguage
English
Journal_Title
Antennas and Propagation, IEEE Transactions on
Publisher
ieee
ISSN
0018-926X
Type
jour
DOI
10.1109/TAP.2014.2324012
Filename
6815660
Link To Document