Title :
Feature discovery in approximate dynamic programming
Author :
Preux, Philippe ; Girgin, Sertan ; Loth, Manuel
Author_Institution :
Lab. dInformatique Fondamentale de Lille, Univ. de Lille, Lille
fDate :
March 30 2009-April 2 2009
Abstract :
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the context of reinforcement learning to discover a good, if not the best, representation of states, we report here on the use of the same kind of approach in the context of approximate dynamic programming. The striking difference with the usual approach is that we use a non parametric function approximator to represent the value function, instead of a parametric one. We also argue that the problem of discovering the best state representation and the problem of the value function approximation are just the two faces of the same coin, and that using a non parametric approach provides an elegant solution to both problems at once.
Keywords :
dynamic programming; function approximation; learning (artificial intelligence); mathematics computing; approximate dynamic programming; data representation; feature discovery; machine learning; reinforcement learning; value function approximation; Acceleration; Artificial intelligence; Computer science; Control systems; Dynamic programming; Function approximation; Games; Machine learning; Software tools; Velocity control;
Conference_Titel :
Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL '09. IEEE Symposium on
Conference_Location :
Nashville, TN
Print_ISBN :
978-1-4244-2761-1
DOI :
10.1109/ADPRL.2009.4927533