DocumentCode :
49462
Title :
On the Optimal Design and Performance of Linear Physical-Layer Network Coding for Fading Two-Way Relay Channels
Author :
Tao Yang ; Collings, Iain B.
Author_Institution :
Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia
Volume :
13
Issue :
2
fYear :
2014
fDate :
Feb-14
Firstpage :
956
Lastpage :
967
Abstract :
The design of a reliable physical-layer network coding (PNC) scheme for practical fading two-way relay channels is a challenging task. This is because the signals transmitted by two users arrive at the relay with varied amplitudes and a relative carrier-phase offset, which will impair the performance of PNC. This paper studies a linear PNC scheme for fading two-way relay channels where the transmitters lack the channel state information. In this scheme, the relay computes and broadcast some finite-set integer combinations of two users´ messages. The coefficients for the integer combinations used at the relay are carefully designed to minimize the error probability. This scheme can be viewed as a practical embodiment of the compute-and-forward concept. We develop a new LPNC design criterion called minimum set-distance maximization. Using this criterion, we derive an explicit expression for the optimized integer coefficients that minimizes the error probability of LPNC. The optimized integer coefficients turn out to resemble the fading channel coefficients. We further derive a closed-form expression on the average error probability performance over a complex-valued Rayleigh fading two-way relay channel, which shows that our designed LPNC scheme approaches the optimal error performance at a high SNR. Numerical results show that our designed LPNC outperforms existing schemes by more than 5 dB at a medium-to-high SNR regime.
Keywords :
Rayleigh channels; error statistics; linear codes; network coding; optimisation; relay networks (telecommunication); Rayleigh fading channel; carrier-phase offset; channel state information; closed-form expression; compute-and-forward concept; error probability; fading channel coefficients; finite-set integer combinations; linear PNC scheme; linear physical-layer network coding; minimum set-distance maximization; optimal error performance; optimized integer coefficients; physical-layer network coding scheme; transmitters; two-way relay channels; Error probability; Fading; Optimized production technology; Relays; Signal to noise ratio; Silicon; Transmitters; Network coding; compute-and-forward; distance property; physical-layer network coding;
fLanguage :
English
Journal_Title :
Wireless Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2013.010214.130692
Filename :
6702839
Link To Document :
بازگشت