• DocumentCode
    495493
  • Title

    Object Tracking Using Point Matching Based on MCMC

  • Author

    Hongbo, Yang ; Xia, Hou

  • Author_Institution
    Sch. of Autom., Beijing Inf. Sci. & Technol. Univ., Beijing, China
  • Volume
    4
  • fYear
    2009
  • fDate
    March 31 2009-April 2 2009
  • Firstpage
    182
  • Lastpage
    186
  • Abstract
    Most of the reported object tracking methods achieved by estimating the object position cannot suit for large image deformations. For this reason, a new object tracking base on MCMC point matching method is presented in this paper. This method applies MCMC algorithm to solve the posterior probability distribution problem and obtain the optimal matching parameters include position, rotation, scale information. The test results prove this method can successfully cope with target scale or orientation variations in video tracking.
  • Keywords
    Markov processes; Monte Carlo methods; image matching; image sampling; object detection; statistical distributions; tracking; video signal processing; MCMC point matching method; MCMC sampling method; Markov Chain Monte Carlo algorithm; object video tracking method; optimal matching parameter; posterior probability distribution problem; Bayesian methods; Computer science; Image motion analysis; Information science; Matrix decomposition; Optical distortion; Optical filters; Pixel; Probability distribution; Target tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Science and Information Engineering, 2009 WRI World Congress on
  • Conference_Location
    Los Angeles, CA
  • Print_ISBN
    978-0-7695-3507-4
  • Type

    conf

  • DOI
    10.1109/CSIE.2009.319
  • Filename
    5170984