DocumentCode :
495773
Title :
Wavelet-Like Block Incremental Unknowns for Numerical Computation of Anisotropic Parabolic Equations
Author :
Wu, Yu-jiang ; Yang, Ai-Li ; Song, Lun-Ji
Author_Institution :
Sch. of Math. & Stat., Lanzhou Univeristy, Lanzhou, China
Volume :
2
fYear :
2009
fDate :
March 31 2009-April 2 2009
Firstpage :
550
Lastpage :
554
Abstract :
For the anisotropic parabolic equations, we introduce a multilevel wavelet-like block incremental unknowns (WBIU) method and then, based on this new method, we construct a WBIU-type Crank-Nicholson scheme. The stability of this scheme is carefully studied. The numerical results show that the condition number of the coefficient matrix of the linear system correspond to this scheme is reduced efficiently for epsiv small, and these results also validate the stability of this new scheme.
Keywords :
linear systems; numerical stability; parabolic equations; wavelet transforms; WBIU-type Crank-Nicholson scheme; anisotropic parabolic equations; linear system coefficient matrix; multilevel wavelet-like block incremental unknowns method; numerical computation; Anisotropic magnetoresistance; Computer science; Discrete wavelet transforms; Equations; Finite difference methods; Linear systems; Mathematics; Scientific computing; Stability; Statistics; Incremental unknowns; anisotropic parabolic equations; block matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Information Engineering, 2009 WRI World Congress on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-0-7695-3507-4
Type :
conf
DOI :
10.1109/CSIE.2009.237
Filename :
5171399
Link To Document :
بازگشت