• DocumentCode
    501100
  • Title

    A New Validity Function for Fuzzy Clustering

  • Author

    Li, Yang ; Yu, Fusheng

  • Author_Institution
    Lab. of Math. & Complex Syst., Beijing Normal Univ., Beijing, China
  • Volume
    1
  • fYear
    2009
  • fDate
    6-7 June 2009
  • Firstpage
    462
  • Lastpage
    465
  • Abstract
    This paper first gives a new validity function for fuzzy clustering, then presents a method of the optimal selecting of the cluster number in the standard fuzzy c-means clustering algorithm, and finally outlines the fuzzy c-means clustering algorithm with parameters self-adapted. Experimental results carried on synthetic data set and data set based on actual background illustrate the performance of the new validity function and the corresponding fuzzy clustering algorithm.
  • Keywords
    fuzzy set theory; pattern clustering; fuzzy c-means clustering algorithm; optimal selecting method; validity function; Algorithm design and analysis; Clustering algorithms; Computational intelligence; Fuzzy sets; Fuzzy systems; Iterative algorithms; Laboratories; Mathematical programming; Mathematics; Partitioning algorithms; Fuzzy C-Means; cluster number; clustering validity function; fuzzy clustering analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence and Natural Computing, 2009. CINC '09. International Conference on
  • Conference_Location
    Wuhan
  • Print_ISBN
    978-0-7695-3645-3
  • Type

    conf

  • DOI
    10.1109/CINC.2009.100
  • Filename
    5231083