• DocumentCode
    501166
  • Title

    A Method Using Nonparametric Hidden Markov Trees for Image Denoising

  • Author

    Song, Wang ; Weihong, Wang

  • Author_Institution
    Coll. of Software, Zhejiang Univ. of Technol., Hangzhou, China
  • Volume
    1
  • fYear
    2009
  • fDate
    6-7 June 2009
  • Firstpage
    143
  • Lastpage
    146
  • Abstract
    A hierarchical, nonparametric statistical model for wavelet representations of natural images is developed in this paper. Extending previous work on Gaussian scale mixtures, wavelet coefficients are marginally distributed according to infinite, Dirichlet process mixtures. A hidden Markov tree is then used to couple the mixture assignments at neighboring nodes. Via a Monte Carlo learning algorithm, the resulting hierarchical Dirichlet process hidden Markov tree (HDP-HMT) model automatically adapts to the complexity of different images and wavelet bases. Image denoising results demonstrate the effectiveness of this learning process.
  • Keywords
    Gaussian processes; Monte Carlo methods; hidden Markov models; image denoising; trees (mathematics); Dirichlet process mixtures; Gaussian scale mixtures; Monte Carlo learning algorithm; hierarchical Dirichlet process-hidden Markov tree model; hierarchical statistical model; image denoising; learning process; nonparametric hidden Markov trees; nonparametric statistical model; wavelet representations; Bayesian methods; Computational intelligence; Educational institutions; Frequency; Gaussian distribution; Hidden Markov models; Image denoising; Monte Carlo methods; Statistical distributions; Wavelet coefficients; hidden Markov trees; image denoising; nonparametric Bayesian methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence and Natural Computing, 2009. CINC '09. International Conference on
  • Conference_Location
    Wuhan
  • Print_ISBN
    978-0-7695-3645-3
  • Type

    conf

  • DOI
    10.1109/CINC.2009.49
  • Filename
    5231221