• DocumentCode
    508896
  • Title

    Inverse Eigenvalue Problem for Generalized Periodic Jacobi Matrices with Linear Relation

  • Author

    Zhibin Li ; Xinxin Zhao

  • Author_Institution
    Coll. of Math. & Phys., Dalian Jiaotong Univ., Dalian, China
  • Volume
    1
  • fYear
    2009
  • fDate
    21-22 Nov. 2009
  • Firstpage
    18
  • Lastpage
    20
  • Abstract
    This paper presents the following inverse eigenvalue problem for generalized periodic Jacobi matrices: Given two unequal real numbers and nonzero vectors. Find n steps real generalized Jacobi matrices J, which is satisfied the conditions that the numbers and the nonzero vectors are the characteristic pairs of J. The algorithm and the theorem of the solution of the problem are given, and some numerical examples are provided.
  • Keywords
    Jacobian matrices; eigenvalues and eigenfunctions; vectors; generalized periodic Jacobi matrices; inverse eigenvalue problem; linear relation; nonzero vectors; real numbers; Educational institutions; Eigenvalues and eigenfunctions; Information technology; Inverse problems; Jacobian matrices; Linear matrix inequalities; Mathematics; Physics; Vectors; Generalized Periodic Jacobi Matrices; characteristic value; inverse problem; linear relation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on
  • Conference_Location
    Nanchang
  • Print_ISBN
    978-0-7695-3859-4
  • Type

    conf

  • DOI
    10.1109/IITA.2009.8
  • Filename
    5368405