• DocumentCode
    50977
  • Title

    Tolerance Approach to Possibilistic Nonlinear Regression With Interval Data

  • Author

    Hladik, Milan ; Cerny, Martin

  • Author_Institution
    Dept. of Appl. Math., Charles Univ., Prague, Czech Republic
  • Volume
    44
  • Issue
    12
  • fYear
    2014
  • fDate
    Dec. 2014
  • Firstpage
    2509
  • Lastpage
    2520
  • Abstract
    We study possibilistic nonlinear regression models with crisp and/or interval data. Herein, the task is to compute tight interval regression parameters such that all observed output data (either crisp or interval) are covered by the range of the nonlinear interval regression function. We propose a method for determination of interval regression parameters based on the tolerance approach developed by the authors for the linear case. We define two classes of nonlinear regression models for which efficient algorithms exist. For other models, we provide some extensions allowing to calculate lower and upper bounds on the widths of the optimal interval regression parameters. We also discuss other approaches to interval regression than the possibilistic one. We illustrate the theory by examples.
  • Keywords
    regression analysis; interval data; optimal interval regression parameters; possibilistic nonlinear regression models; tolerance approach; Approximation algorithms; Biological system modeling; Computational modeling; Data models; Linear regression; Materials; Vectors; Interval regression; nonlinear regression; possibilistic regression; tolerance quotient;
  • fLanguage
    English
  • Journal_Title
    Cybernetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    2168-2267
  • Type

    jour

  • DOI
    10.1109/TCYB.2014.2309596
  • Filename
    6778021