• DocumentCode
    51338
  • Title

    Can We Define a Best Estimator in Simple One-Dimensional Cases? [Lecture Notes]

  • Author

    Lantz, Eric ; Vernotte, Francois

  • Author_Institution
    Univ. of Franche-Comte, Besancon, France
  • Volume
    30
  • Issue
    6
  • fYear
    2013
  • fDate
    Nov. 2013
  • Firstpage
    151
  • Lastpage
    156
  • Abstract
    What is the best estimator for assessing a parameter of a probability distribution from a small number of measurements? Is the same answer valid for a location parameter like the mean as for a scale parameter like the variance? It is sometimes argued that it is better to use a biased estimator with low dispersion than an unbiased estimator with a higher dispersion. In which cases is this assertion correct? To answer these questions, we will compare, on a simple example, the determination of a location parameter and a scale parameter with three "optimal" estimators: the minimum-variance unbiased estimator, the minimum square error estimator, and the a posteriori mean.
  • Keywords
    estimation theory; mean square error methods; normal distribution; parameter estimation; statistical analysis; a posteriori mean; dispersion; location parameter; minimum square error estimator; minimum-variance unbiased estimator; one-dimensional cases; optimal estimators; probability distribution; scale parameter; Density measurement; Frequency estimation; Gaussian distribution; Parameter estimation; Probability density function; Random variables; Time-frequency analysis;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1053-5888
  • Type

    jour

  • DOI
    10.1109/MSP.2013.2276532
  • Filename
    6632986