• DocumentCode
    518645
  • Title

    Identification for Piezoelectric Smart Materials based on Neural Networks method

  • Author

    Yanmei, Liu ; Zhen, Chen ; Dingyu, Xue

  • Author_Institution
    Dept. of Autom., Shenyang Inst. of Aeronaut. Eng., Shenyang, China
  • Volume
    2
  • fYear
    2010
  • fDate
    27-29 March 2010
  • Firstpage
    608
  • Lastpage
    611
  • Abstract
    Based on the static Preisach hysteresis model of Piezoelectric Smart Materials, the technology of Artificial Neural Networks is applied for the hysteresis modeling of Piezoelectric Smart Materials. The BP network is chosen as the method of identifying the non-linear hysteresis sysytem. Adopting this method one sample´s hysteresis model is built. The results have shown that this method is correct and effective.
  • Keywords
    backpropagation; composite materials; intelligent actuators; intelligent materials; magnetic hysteresis; neurocontrollers; nonlinear control systems; piezoelectric actuators; piezoelectric materials; polymers; BP network; IPMC actuator; artificial neural network; hysteresis modeling; ionic polymer-metal composite; nonlinear hysteresis sysytem; piezoelectric smart material; static Preisach hysteresis model; Artificial neural networks; Biomembranes; Electric potential; Magnetic hysteresis; Magnetic materials; Neural networks; Piezoelectric actuators; Piezoelectric materials; Polymers; Space technology; Artificial Neural Networks; Preisach hysteresis model; identifying; non-linear;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Advanced Computer Control (ICACC), 2010 2nd International Conference on
  • Conference_Location
    Shenyang
  • Print_ISBN
    978-1-4244-5845-5
  • Type

    conf

  • DOI
    10.1109/ICACC.2010.5486712
  • Filename
    5486712