• DocumentCode
    519158
  • Title

    Parameter identification of a Linear Permanent Magnet motor using Particle Swarm Optimization

  • Author

    Therdbankerd, Tithiwat ; Sanposh, Peerayot ; Chayopitak, Nattapon ; Fujita, Hideaki

  • Author_Institution
    Dept. of Electr. Eng., Kasetsart Univ., Bangkok, Thailand
  • fYear
    2010
  • fDate
    19-21 May 2010
  • Firstpage
    173
  • Lastpage
    177
  • Abstract
    Accurate and effective parameter identification is an important engineering task in high performance control system design. One emerging approach to effectively identify such nonlinear or dynamic unknown parameters is to use Particle Swarm Optimization (PSO) algorithm. Linear Permanent Magnet (LPM) motor is a high performance actuator employed in many applications that require direct linear motion without mechanical transmission for high acceleration and accurate positioning. Therefore, accurate motor parameters are necessary to effectively control the LPM motors. This paper proposes a simple PSO based method with chirp inputs to identify the LPM motor´s parameters. The simulations and experiments are conducted to verify the results and determine the effectiveness of the proposed method.
  • Keywords
    linear motors; parameter estimation; particle swarm optimisation; permanent magnet motors; LPM motors; direct linear motion; high performance control system design; linear permanent magnet motor; parameter identification; particle swarm optimization; Chirp; Control systems; Intelligent robots; Laboratories; Parameter estimation; Particle swarm optimization; Permanent magnet motors; Robotics and automation; Signal processing; Synchronous motors; Linear Permanent Magnet Motor; Parameter Identification; Particle Swarm Optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on
  • Conference_Location
    Chaing Mai
  • Print_ISBN
    978-1-4244-5606-2
  • Electronic_ISBN
    978-1-4244-5607-9
  • Type

    conf

  • Filename
    5491507