Title :
Gate-level characterization: Foundations and hardware security applications
Author :
Wei, Sheng ; Meguerdichian, Saro ; Potkonjak, Miodrag
Author_Institution :
Comput. Sci. Dept., Univ. of California, Los Angeles, CA, USA
Abstract :
Gate-level characterization (GLC) is the process of characterizing each gate of an integrated circuit (IC) in terms of its physical and manifestation properties. It is a key step in the IC applications regarding cryptography, security, and digital rights management. However, GLC is challenging due to the existence of manufacturing variability (MV) and the strong correlations among some gates in the circuit. We propose a new solution for GLC by using thermal conditioning techniques. In particular, we apply thermal control on the process of GLC, which breaks the correlations by imposing extra variations concerning gate level leakage power. The scaling factors of all the gates can be characterized by solving a system of linear equations using linear programming (LP). Based on the obtained gate level scaling factors, we demonstrate an application of GLC, hardware Trojan horse (HTH) detection, by using constraint manipulation. We evaluate our approach of GLC and HTH detection on several ISCAS85/89 benchmarks. The simulation results show that our thermally conditioned GLC approach is capable of characterizing all the gates with an average error less than the measurement error, and we can detect HTHs with 100% accuracy on a target circuit.
Keywords :
Application specific integrated circuits; Cryptography; Digital integrated circuits; Equations; Hardware; Invasive software; Linear programming; Manufacturing; Process control; Security; Gate-level characterization; hardware Trojan horse; manufacturing variability; thermal conditioning;
Conference_Titel :
Design Automation Conference (DAC), 2010 47th ACM/IEEE
Conference_Location :
Anaheim, CA, USA
Print_ISBN :
978-1-4244-6677-1