• DocumentCode
    526160
  • Title

    A simulation study of invariant second-order reduced-bias Extreme value index estimators

  • Author

    Gomes, M. Ivette ; Henriques-Rodrigues, Lígia ; Miranda, Cristina

  • Author_Institution
    Fac. de Cienc., Univ. de Lisboa, Lisbon, Portugal
  • fYear
    2010
  • fDate
    21-24 June 2010
  • Firstpage
    533
  • Lastpage
    538
  • Abstract
    In this paper, we deal with corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in Statistics of Extremes. Under this context, the classical EVI-estimators are the Hill estimators, based on an intermediate number k of top order statistics. But the Hill estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0 ≤ q <; 1. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider and study, through Monte-Carlo simulation, the new PORT-MVRB EVI-estimators.
  • Keywords
    Monte Carlo methods; estimation theory; invariance; reduced order systems; Monte-Carlo simulation; PORT-Hill estimators; invariant second order reduced bias extreme value index estimators; second order minimum variance reduced bias extreme value index; statistics of extremes; top order statistics; tuning parameter; Information technology; Manganese; Statistics of extremes; bias reduction; extreme value index; heavy tails; invariance; semi-parametric estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Technology Interfaces (ITI), 2010 32nd International Conference on
  • Conference_Location
    Cavtat/Dubrovnik
  • ISSN
    1330-1012
  • Print_ISBN
    978-1-4244-5732-8
  • Type

    conf

  • Filename
    5546487