Title :
Adaptive Flux-Weakening Controller for Interior Permanent Magnet Synchronous Motor Drives
Author :
Bolognani, Silverio ; Calligaro, Sandro ; Petrella, Roberto
Author_Institution :
Univ. of Padova, Padua, Italy
Abstract :
Voltage feedback flux-weakening control scheme for vector-controlled interior permanent magnet synchronous motor drive systems is considered in this paper. The voltage controller is based on the difference between the amplitude of the reference voltage space vector and a proper limit value, related to the feeding inverter limitations, and adopts the phase angle of reference current space vector as the control variable. A novel theoretical analysis of the dynamics of the voltage control loop is carried out by considering nonlinear effects and discrete-time implementation issues as well. The design of the controller can therefore be optimized for each operating condition by an adaptive approach, allowing to define stability properties and to maximize bandwidth of the voltage control loop. Maximization of the dynamical performances provides the main advantage of the proposal, that is, allows a lower voltage (control) margin to be considered with respect to standard approaches, leading to a higher torque and system efficiency and/or a reduced value of the dc bus capacitance. A motor drive system for home appliances is considered as a test bench to prove the effectiveness and importance of the proposal.
Keywords :
adaptive control; feedback; invertors; machine vector control; permanent magnet motors; stability; synchronous motor drives; voltage control; adaptive flux-weakening controller; control variable; dc bus capacitance; dynamical performance maximization; feeding inverter limitations; home appliances; nonlinear effects; phase angle; reference current space vector; reference voltage space vector amplitude; stability property; vector-controlled interior permanent magnet synchronous motor drive systems; voltage control loop dynamics; voltage feedback flux-weakening control scheme; Aerospace electronics; Current control; Permanent magnet motors; Regulators; Torque; Vectors; Voltage control; Constant power region; flux-weakening (FW); interior permanent magnet synchronous motor (IPMSM) drives; voltage control;
Journal_Title :
Emerging and Selected Topics in Power Electronics, IEEE Journal of
DOI :
10.1109/JESTPE.2014.2299153