• DocumentCode
    53150
  • Title

    ISS Method for Coordination Control of Nonlinear Dynamical Agents Under Directed Topology

  • Author

    Xiangke Wang ; Jiahu Qin ; Changbin Yu

  • Author_Institution
    Coll. of Mechatron. Eng. & Autom., Nat. Univ. of Defense Technol., Changsha, China
  • Volume
    44
  • Issue
    10
  • fYear
    2014
  • fDate
    Oct. 2014
  • Firstpage
    1832
  • Lastpage
    1845
  • Abstract
    The problems of coordination of multiagent systems with second-order locally Lipschitz continuous nonlinear dynamics under directed interaction topology are investigated in this paper. A completely nonlinear input-to-state stability (ISS)-based framework, drawing on ISS methods, with the aid of results from graph theory, matrix theory, and the ISS cyclic-small-gain theorem, is proposed for the coordination problem under directed topology, which can effectively tackle the technical challenges caused by locally Lipschitz continuous dynamics. Two coordination problems, i.e., flocking with a virtual leader and containment control, are considered. For both problems, it is assumed that only a portion of the agents can obtain the information from the leader(s). For the first problem, the proposed strategy is shown effective in driving a group of nonlinear dynamical agents reach the prespecified geometric pattern under the condition that at least one agent in each strongly connected component of the information-interconnection digraph with zero in-degree has access to the state information of the virtual leader; and the strategy proposed for the second problem can guarantee the nonlinear dynamical agents moving to the convex hull spanned by the positions of multiple leaders under the condition that for each agent there exists at least one leader that has a directed path to this agent.
  • Keywords
    directed graphs; matrix algebra; mobile robots; multi-agent systems; multi-robot systems; nonlinear dynamical systems; stability; ISS cyclic-small-gain theorem; ISS method; containment control; convex hull; coordination control; directed interaction topology; geometric pattern; graph theory; information-interconnection digraph; matrix theory; multiagent system coordination problems; nonlinear dynamical agents; nonlinear input-to-state stability-based framework; second-order locally Lipschitz continuous nonlinear dynamics; virtual leader state information; Graph theory; Multi-agent systems; Nonlinear dynamical systems; Stability criteria; Topology; Vectors; Directed topology; ISS; locally lipschitz continue; multiagent coordination; second-order nonlinear dynamics;
  • fLanguage
    English
  • Journal_Title
    Cybernetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    2168-2267
  • Type

    jour

  • DOI
    10.1109/TCYB.2013.2296311
  • Filename
    6705603