• DocumentCode
    536341
  • Title

    Research on motion segmentation by integrating maximizer of the posterior marginals with MAP

  • Author

    Linghu, Yong-Fang ; Shu, Heng

  • Author_Institution
    Guizhou Colloge of Finance & Econ., Guiyang, China
  • Volume
    1
  • fYear
    2010
  • fDate
    29-31 Oct. 2010
  • Firstpage
    137
  • Lastpage
    141
  • Abstract
    A novel video motion object automatic segmentation algorithm based on Gaussian Markov random field is studied in this paper. In this algorithm, the probability density functions of the different images are estimated as Gaussian mixture distributions, moving object detection algorithm based on integrating maximizer of the posterior marginals with MAP. Firstly, initial segmentation is applied to obtain number of the initial motions and the corresponding initial parameters of the motion model. Then the parameters are updated by using the given parameter estimation method. The experiment results show that the proposed algorithm here is effective.
  • Keywords
    Gaussian distribution; image motion analysis; image segmentation; object detection; parameter estimation; Gaussian Markov random field; Gaussian mixture distributions; moving object detection algorithm; parameter estimation method; probability density function; video motion object segmentation; Computational efficiency; Image segmentation; Motion segmentation; Robustness; Gibbs Random Field; MAP algorithm; Maximizer of the Posterior Marginals; Moving object segmentation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on
  • Conference_Location
    Xiamen
  • Print_ISBN
    978-1-4244-6582-8
  • Type

    conf

  • DOI
    10.1109/ICICISYS.2010.5658732
  • Filename
    5658732