DocumentCode :
539188
Title :
Implementation of Sequential Importance Sampling in GPGPU
Author :
Hayashi, K. ; Saito, M.M. ; Yoshida, R. ; Higuchi, T.
Author_Institution :
Inst. of Stat. Math., Tokyo, Japan
fYear :
2010
fDate :
26-29 July 2010
Firstpage :
1
Lastpage :
6
Abstract :
The estimation of many unknown parameters is carried out using a simplified Sequential Importance Sampling (SIS) algorithm which is implemented in a graphic processing unit (GPU). The aim of the present work is to show technical points to bring out the performance of GPU. Using the implemented code, two numerical experiments are demonstrated. In the first demonstration, it is shown that a parameter estimation involving 109 Monte Carlo samples is completed within eight hours. In the second demonstration, accuracy-guaranteed evaluation of the likelihood is carried out.
Keywords :
computer graphic equipment; coprocessors; general purpose computers; importance sampling; parameter estimation; GPGPU; Monte Carlo samples; graphic processing unit; numerical experiment; parameter estimation; sequential importance sampling; Biological system modeling; Computational modeling; Data models; Graphics processing unit; Instruction sets; Mathematical model; Monte Carlo methods; GPGPU programming; Monte Carlo method; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2010 13th Conference on
Conference_Location :
Edinburgh
Print_ISBN :
978-0-9824438-1-1
Type :
conf
DOI :
10.1109/ICIF.2010.5712017
Filename :
5712017
Link To Document :
بازگشت