DocumentCode
542332
Title
Factor analysed hidden Markov models
Author
Rosti, A-V.I. ; Gales, M.J.F.
Author_Institution
Cambridge University Engineering Department, Trumpington Street, CB2 IPZ, United Kingdom
Volume
1
fYear
2002
fDate
13-17 May 2002
Abstract
This paper presents a general form of acoustic model for speech recognition. The model is based on an extension to factor analysis where the low dimensional subspace is modelled with a mixture of Gaussians hidden Markov model (HMM) and the observation noise by a Gaussian mixture model. Here the HMM output vectors are the latent variables of a general factor analyser. The model combines shared factor analysis with a dynamic version of independent factor analysis. This factor analysed HMM (FAHMM) provides an alternative, compact, model to handle intra-frame correlation. Furthermore, it allows variable dimension subspaces to be explored. A variety of model configurations and sharing schemes are examined, some of which correspond to standard systems. The training and recognition algorithms for FAHMMs are described and some initial result with Switchboard are presented.
Keywords
Analytical models; Awards activities; Hidden Markov models;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on
Conference_Location
Orlando, FL, USA
ISSN
1520-6149
Print_ISBN
0-7803-7402-9
Type
conf
DOI
10.1109/ICASSP.2002.5743950
Filename
5743950
Link To Document