DocumentCode
542372
Title
Intrinsic distance lower bound for unbiased estimators on Riemannian manifolds
Author
Xavier, João ; Barroso, Victor
Author_Institution
Instituto Superior Técnico - Instituto de Sistemas e Robótica, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Volume
2
fYear
2002
fDate
13-17 May 2002
Abstract
We consider statistical models parameterized over connected Riemannian manifolds. We present a lower bound on the mean-square distance of unbiased estimators about their mean values. The derived bound depends both on the curvature of the parameter manifold and a coordinate-free extension of the classical Fisher information matrix. Our study can be applied in estimation problems with smooth parametric constraints, and in statistical models indexed over coset spaces. Illustrative examples concerning inferences on the unit-sphere and the complex projective space are worked out.
Keywords
Erbium; Manifolds; Polynomials;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on
Conference_Location
Orlando, FL, USA
ISSN
1520-6149
Print_ISBN
0-7803-7402-9
Type
conf
DOI
10.1109/ICASSP.2002.5744001
Filename
5744001
Link To Document