• DocumentCode
    553159
  • Title

    Learning of ontology from the web-table

  • Author

    Song-il Cha ; Zong-min Ma ; Jing-wei Cheng ; Fu Zhang

  • Author_Institution
    Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
  • Volume
    3
  • fYear
    2011
  • fDate
    26-28 July 2011
  • Firstpage
    1454
  • Lastpage
    1458
  • Abstract
    Table is ubiquitous in web documents. Turning the web-table information into ontology requires automatic approaches. In this paper, we discuss how to learn ontology from web-table. In order to obtain table schemata for learning of ontology, we first present general layout structure of the table, then, we propose ontology extraction method according to the five table group. The learned ontology includes the following relationships: is-a relationships, class-instance relationships, RDF triples, property domains and property ranges.
  • Keywords
    Internet; document handling; information retrieval; learning (artificial intelligence); ontologies (artificial intelligence); RDF triples; Web documents; Web-table; class-instance relationships; ontology extraction method; ontology learning; property domains; property ranges; table information extraction; table schemata; Correlation; Data mining; Feature extraction; Layout; Ontologies; Printers; Semantics; class; ontology learning; relationship; table information extracting; web-table;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on
  • Conference_Location
    Shanghai
  • Print_ISBN
    978-1-61284-180-9
  • Type

    conf

  • DOI
    10.1109/FSKD.2011.6019792
  • Filename
    6019792