• DocumentCode
    56031
  • Title

    Saliency for Spectral Image Analysis

  • Author

    Le Moan, Steven ; Mansouri, Anass ; Hardeberg, Jon Yngve ; Voisin, Yvon

  • Author_Institution
    Lab. d´Electron. Inf. et Image, Univ. de Bourgogne, Auxerre, France
  • Volume
    6
  • Issue
    6
  • fYear
    2013
  • fDate
    Dec. 2013
  • Firstpage
    2472
  • Lastpage
    2479
  • Abstract
    We introduce a new feature extraction model for purposes of image comparison, visualization and interpretation. We define the notion of spectral saliency, as the extent to which a certain group of pixels stands out in an image and in terms of reflectance, rather than in terms of colorimetric attributes as it is the case in traditional saliency studies. The model takes as an input a multi- or hyper-spectral image with any dimensionality, any range of wavelengths, and it uses a series of dedicated feature extractions to output a single saliency map. We also present a local analysis of the image spectrum allowing to produce such maps in color, thus depicting not only which objects are salients, but also in which range of wavelengths. A variety of applications can be derived from the resulting maps, particularly under the scope of visualization, such as the saliency-driven evaluation of dimensionality reduction techniques. Results show that spectral saliency provides valuable information, which do not correlate neither with visual saliency, second-order statistics nor with naturalness, but serve however well for visualization-related applications.
  • Keywords
    feature extraction; geophysical image processing; hyperspectral imaging; dimensionality reduction techniques; feature extraction model; hyperspectral image; image comparison; image interpretation; image visualization; multispectral image; spectral image analysis; spectral saliency; Euclidean distance; Feature extraction; Hyperspectral sensors; Image color analysis; Visualization; Multi/hyperspectral imagery; saliency; visualization;
  • fLanguage
    English
  • Journal_Title
    Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    1939-1404
  • Type

    jour

  • DOI
    10.1109/JSTARS.2013.2257989
  • Filename
    6515145