Title :
Intradomain and interdomain QoT-aware RWA for translucent optical networks
Author :
Juzi Zhao ; Subramaniam, Suresh ; Brandt-Pearce, Maite
Author_Institution :
Dept. of Electr. & Comput. Eng., George Washington Univ., Washington, DC, USA
Abstract :
Physical impairments in long-haul optical networks mandate that optical signals be regenerated within the (so-called translucent) network. Being expensive devices, regenerators are expected to be allocated sparsely and must be judiciously utilized. Next-generation optical-transport networks will include multiple domains with diverse technologies, protocols, granularities, and carriers. Because of confidentiality and scalability concerns, the scope of network-state information (e.g., topology, wavelength availability) may be limited to within a domain. In such networks, the problem of routing and wavelength assignment (RWA) aims to find an adequate route and wavelength(s) for lightpaths carrying end-to-end service demands. Some state information may have to be explicitly exchanged among the domains to facilitate the RWA process. The challenge is to determine which information is the most critical and make a wise choice for the path and wavelength(s) using the limited information. Recently, a framework for multidomain path computation called backward-recursive path-computation (BRPC) was standardized by the Internet Engineering Task Force. In this paper, we consider the RWA problem for connections within a single domain and interdomain connections so that the quality of transmission (QoT) requirement of each connection is satisfied, and the network-level performance metric of blocking probability is minimized. Cross-layer heuristics that are based on dynamic programming to effectively allocate the sparse regenerators are developed, and extensive simulation results are presented to demonstrate their effectiveness.
Keywords :
dynamic programming; multipath channels; probability; telecommunication network routing; telecommunication security; wavelength assignment; wavelength division multiplexing; BRPC; Internet Engineering Task Force; backward-recursive path-computation; blocking probability; confidentiality concerns; cross-layer heuristics; dynamic programming; end-to-end service demands; interdomain QoT-aware RWA; intradomain QoT-aware RWA; multidomain path computation; network-level performance metric minimization; network-state information; next-generation optical-transport networks; optical signal regeneration; physical impairments; quality-of-transmission requirement; routing-and-wavelength assignment problem; scalability concerns; translucent long-haul optical networks; wavelength division multiplexing-based optical networks; Availability; Bit error rate; Heuristic algorithms; Nonlinear optics; Optical fiber networks; Repeaters; Routing; Backward recursive path computation (BRPC); Cross-layer RWA; Dynamic programming; Multidomain; Physical impairments; Translucent optical networks;
Journal_Title :
Optical Communications and Networking, IEEE/OSA Journal of
DOI :
10.1364/JOCN.6.000536