• DocumentCode
    567602
  • Title

    Adaptive cubature Kalman filter for nonlinear state and parameter estimation

  • Author

    Chen, Huimin

  • Author_Institution
    Dept. of Electr. Eng., Univ. of New Orleans, New Orleans, LA, USA
  • fYear
    2012
  • fDate
    9-12 July 2012
  • Firstpage
    1413
  • Lastpage
    1420
  • Abstract
    In many engineering applications, both state and parameter models are nonlinear. We consider a recursive algorithm for joint state and parameter estimation where the gradient of the prediction error is used to tune the approximate nonlinear filter adaptively. We apply cubature Kalman filter to derive the recursive state and parameter update steps and discuss the computational complexity of the overall algorithm compared with other existing nonlinear filtering methods. Finally, we demonstrate the effectiveness of the proposed filtering method on two practical nonlinear estimation problems, namely, battery state-of-charge estimation and vehicle state estimation under various road conditions and steering inputs.
  • Keywords
    Kalman filters; adaptive signal processing; computational complexity; parameter estimation; adaptive cubature Kalman filter; battery state-of-charge estimation; computational complexity; nonlinear filtering methods; nonlinear state; parameter estimation; parameter models; parameter update steps; prediction error; recursive algorithm; recursive state; state models; vehicle state estimation; Adaptation models; Batteries; Estimation; Kalman filters; Parameter estimation; System-on-a-chip; Vehicles;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Fusion (FUSION), 2012 15th International Conference on
  • Conference_Location
    Singapore
  • Print_ISBN
    978-1-4673-0417-7
  • Electronic_ISBN
    978-0-9824438-4-2
  • Type

    conf

  • Filename
    6289973