• DocumentCode
    567640
  • Title

    Coherent spatio-temporal sensor fusion on a hybrid multicore processor system

  • Author

    Kotas, Charlotte ; Ponce, Eduardo ; Williams, Holly ; Barhen, Jacob

  • Author_Institution
    Comput. Sci. & Math. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA
  • fYear
    2012
  • fDate
    9-12 July 2012
  • Firstpage
    1504
  • Lastpage
    1510
  • Abstract
    We report on the development, implementation, and demonstration of a novel, massively parallel computational scheme for detection of a target radiating a random signal in the presence of noise. This scheme involves coherent spatio-temporal fusion of data streams from multiple sensors, leading to the derivation of LLR detection statistics. Since streaming multicore processors with multi-SIMT architectures open unprecedented opportunities for fast signal processing, our algorithms are implemented on an NVIDIA Tesla C2050 many-core processor. Results achieved to date demonstrate up to two orders of magnitude speedup over a parallel implementation on a conventional quad-core processor, on a per-target-kinematic-hypothesis basis.
  • Keywords
    marine engineering; multiprocessing systems; object detection; parallel processing; sensor fusion; signal detection; statistics; LLR detection statistics; NVIDIA Tesla C2050 many-core processor; coherent spatio-temporal sensor fusion; data streams; hybrid multicore processor system; log likelihood ratio; multiSIMT architectures; multiple sensors; parallel computational scheme; per-target-kinematic-hypothesis basis; quad-core processor; random signal; streaming multicore processors; underwater target detection; Arrays; Covariance matrix; Detectors; Graphics processing unit; Noise; Vectors; CUDA FORTRAN; NVIDIA Tesla; multicore processors; sensor arrays; spatio-temporal LLR detection;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Fusion (FUSION), 2012 15th International Conference on
  • Conference_Location
    Singapore
  • Print_ISBN
    978-1-4673-0417-7
  • Electronic_ISBN
    978-0-9824438-4-2
  • Type

    conf

  • Filename
    6290487