• DocumentCode
    5735
  • Title

    Forecast combining using a generalized single multiplicative neuron

  • Author

    Velasquez, Juan David ; Zambrano, Cristian O. ; Franco, Carlos J.

  • Author_Institution
    Univ. Nac. de Colombia, Sede Medellin, Colombia
  • Volume
    12
  • Issue
    4
  • fYear
    2014
  • fDate
    Jun-14
  • Firstpage
    713
  • Lastpage
    717
  • Abstract
    Forecast combining is an important technique for increasing the accuracy of the forecasts obtained using different alternative models. In this article, we propose the use of a generalized single multiplicative neuron as a nonlinear combiner inside of a forecasts combination model. Numerical evidences indicate that, at least for the experimental case, the multiplicative neuron is able to obtain forecasts more accurate that each individual model and the forecasts combination using a simple arithmetical average.
  • Keywords
    forecasting theory; forecast combining; generalized single multiplicative neuron; nonlinear combiner; Atmospheric modeling; Biological neural networks; Computational modeling; Forecasting; Predictive models; Time series analysis; Combination of forecasts; Holt-Winters model; SARIMA; ensemble methods; neural networks;
  • fLanguage
    English
  • Journal_Title
    Latin America Transactions, IEEE (Revista IEEE America Latina)
  • Publisher
    ieee
  • ISSN
    1548-0992
  • Type

    jour

  • DOI
    10.1109/TLA.2014.6868874
  • Filename
    6868874