DocumentCode
574752
Title
Separable gradient estimation algorithm for Hammerstein systems based on decompositions
Author
Feng Ding
Author_Institution
Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
fYear
2012
fDate
27-29 June 2012
Firstpage
3415
Lastpage
3420
Abstract
This paper studies parameter estimation problem of Hammerstein systems by using the gradient search principle. The Hammerstein system is a bilinear-parameter system which is linear about two parameter vectors, respectively. A separable gradient algorithm is developed for estimating the two parameter vectors based on the hierarchical identification principle. The algorithm is simple in principle and easy to implement online. The simulation results test the effectiveness of the proposed algorithm.
Keywords
bilinear systems; gradient methods; nonlinear control systems; parameter estimation; search problems; Hammerstein systems; bilinear-parameter system; decompositions; gradient search principle; hierarchical identification principle; nonlinear systems; parameter estimation problem; parameter vector estimation; separable gradient estimation algorithm; Convergence; Estimation; Iterative methods; Parameter estimation; Signal processing algorithms; Stochastic processes; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference (ACC), 2012
Conference_Location
Montreal, QC
ISSN
0743-1619
Print_ISBN
978-1-4577-1095-7
Electronic_ISBN
0743-1619
Type
conf
DOI
10.1109/ACC.2012.6315354
Filename
6315354
Link To Document