• DocumentCode
    574752
  • Title

    Separable gradient estimation algorithm for Hammerstein systems based on decompositions

  • Author

    Feng Ding

  • Author_Institution
    Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
  • fYear
    2012
  • fDate
    27-29 June 2012
  • Firstpage
    3415
  • Lastpage
    3420
  • Abstract
    This paper studies parameter estimation problem of Hammerstein systems by using the gradient search principle. The Hammerstein system is a bilinear-parameter system which is linear about two parameter vectors, respectively. A separable gradient algorithm is developed for estimating the two parameter vectors based on the hierarchical identification principle. The algorithm is simple in principle and easy to implement online. The simulation results test the effectiveness of the proposed algorithm.
  • Keywords
    bilinear systems; gradient methods; nonlinear control systems; parameter estimation; search problems; Hammerstein systems; bilinear-parameter system; decompositions; gradient search principle; hierarchical identification principle; nonlinear systems; parameter estimation problem; parameter vector estimation; separable gradient estimation algorithm; Convergence; Estimation; Iterative methods; Parameter estimation; Signal processing algorithms; Stochastic processes; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2012
  • Conference_Location
    Montreal, QC
  • ISSN
    0743-1619
  • Print_ISBN
    978-1-4577-1095-7
  • Electronic_ISBN
    0743-1619
  • Type

    conf

  • DOI
    10.1109/ACC.2012.6315354
  • Filename
    6315354