DocumentCode :
578476
Title :
Method of tags recommendation for blogs: A comparative study
Author :
Tang, Li-juan ; Zhang, Cheng-zhi
Author_Institution :
Dept. of Inf. Manage., Nanjing Univ. of Sci. & Technol., Nanjing, China
Volume :
5
fYear :
2012
fDate :
15-17 July 2012
Firstpage :
2037
Lastpage :
2040
Abstract :
Tags are products of Web 2.0. They play an important role in user modeling, friends or information recommendation. In this paper, keywords from blogs are extracted by using TextRank and TF*IDF algorithms respectively. The keywords are used to tag recommendation. Experiment results show that the performance of these two algorithms is very closely.
Keywords :
Internet; Web sites; recommender systems; TextRank; Web 2.0; blogs; information recommendation; tags recommendation; user modeling; Abstracts; Blogs; Electronic mail; Social tagging; TF*IDF; Tags recommendation; TextRank;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics (ICMLC), 2012 International Conference on
Conference_Location :
Xian
ISSN :
2160-133X
Print_ISBN :
978-1-4673-1484-8
Type :
conf
DOI :
10.1109/ICMLC.2012.6359689
Filename :
6359689
Link To Document :
بازگشت