DocumentCode
57850
Title
Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems
Author
Ghadimi, Euhanna ; Teixeira, Andre ; Shames, Iman ; Johansson, Mikael
Author_Institution
ACCESS Linnaeus Center, R. Inst. of Technol., Stockholm, Sweden
Volume
60
Issue
3
fYear
2015
fDate
Mar-15
Firstpage
644
Lastpage
658
Abstract
The alternating direction method of multipliers (ADMM) has emerged as a powerful technique for large-scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative characterization of the impact of the algorithm parameters on the convergence times of the method is still lacking. In this paper we find the optimal algorithm parameters that minimize the convergence factor of the ADMM iterates in the context of ℓ2-regularized minimization and constrained quadratic programming. Numerical examples show that our parameter selection rules significantly outperform existing alternatives in the literature.
Keywords
minimisation; quadratic programming; ℓ2-regularized minimization; ADMM; alternating direction method of multipliers; convergence factor; convergence properties; large-scale structured optimization; optimal parameter selection; quadratic problems; quadratic programming; Convergence; Eigenvalues and eigenfunctions; Estimation; Quadratic programming; Tin; Vectors; ADMM; convergence rate; optimal step-size; optimization algorithm;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.2014.2354892
Filename
6892987
Link To Document