• DocumentCode
    582875
  • Title

    Dependent function interval parameters training algorithm based on DBSCAN clustering

  • Author

    Yang, Li ; Guangqiang, Xie ; Xiaomei, Li ; Hua, Liu

  • Author_Institution
    Sch. of Autom., Guangdong Univ. of Technol., Guangzhou, China
  • fYear
    2012
  • fDate
    25-27 July 2012
  • Firstpage
    7709
  • Lastpage
    7712
  • Abstract
    Dependent function is used to describe basic-element have a nature in what degree in domain, the interval parameters of dependent function decide the boundery value by which element change from quantitative to qualitative. This paper research on cleaning noise data and clustering with DBSCAN algorhithm based on a set of training samples without regard to subjective factors and computing the interval parameter with clustering result. In the paper, we have two simulations on experiment data and actual data taking the case of elementary dependent function, the simulation results are considerably accurate and reasonable.
  • Keywords
    data analysis; pattern clustering; DBSCAN algorithm; DBSCAN clustering; boundery value; data clustering; dependent function interval parameter training algorithm; elementary dependent function; noise data cleaning; subjective factor; Automation; Clustering algorithms; Computers; Educational institutions; Electronic mail; Hydroelectric power generation; Training; DBSCAN; Extenics; dependent function; parameter training;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (CCC), 2012 31st Chinese
  • Conference_Location
    Hefei
  • ISSN
    1934-1768
  • Print_ISBN
    978-1-4673-2581-3
  • Type

    conf

  • Filename
    6391309