DocumentCode :
58336
Title :
Impact of Moisture Distribution Within the Sensing Depth on L- and C-Band Emission in Sandy Soils
Author :
Pang-Wei Liu ; De Roo, R.D. ; England, A.W. ; Judge, Jasmeet
Author_Institution :
Agric. & Biol. Eng. Dept., Univ. of Florida, Gainesville, FL, USA
Volume :
6
Issue :
2
fYear :
2013
fDate :
Apr-13
Firstpage :
887
Lastpage :
899
Abstract :
The performances of the soil moisture retrieval and assimilation algorithms using microwave observations rely on realistic estimates of brightness temperatures (TB) from microwave emission models. This study identifies circumstances when current models fail to reliably relate near-surface soil moisture to an observed TB at L-band; offers a plausible explanation of the physical cause of these failures; and recommends improvements needed so that L-band observations can provide reliable estimates of soil moisture, more universally. Physically consistent soil parameters and moisture at the surface were estimated by using dual-polarized C-band observations during an intensive field experiment, for an irrigation event and subsequent drydown. These derived parameters were used in conjunction with the in situ moisture in deeper layers and different moisture profiles within the moisture sensing depth to obtain estimates of H-pol TB at L-band, that provided best matches with the observed TB. The general assumptions of linear moisture distribution, with uniform or exponentially decaying weighting functions provided realistic TB during the later stages of the drydown. However, the RMSDs of the TBs were up to 10.37 K during the wet period. In addition, the use of one value of moisture representing the entire moisture sensing depth during this highly dynamic stage of the drydown provides unrealistic estimates of emissivity, and hence, TB at L-band. This study recommends use of a hydrological model to provide dynamic, realistic soil moisture profiles within the sensing depth and also an improved emissivity model that utilizes these detailed profiles for estimating TB.
Keywords :
hydrological techniques; microwave measurement; moisture; remote sensing; soil; C-band emission; L-band emission; brightness temperatures estimates; dual polarized C-band observations; hydrological model; irrigation event; linear moisture distribution; microwave emission models; microwave observations; moisture distribution effects; moisture sensing depth; near surface soil moisture; physically consistent soil parameters; post irrigation drydown event; sandy soils; soil moisture assimilation algorithms; soil moisture retrieval algorithms; soil surface moisture; L-band; Microwave radiometry; Moisture; Rough surfaces; Soil moisture; Emission models; moisture sensing depth; passive microwave remote sensing; rough surface emissivity; soil moisture profile;
fLanguage :
English
Journal_Title :
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
Publisher :
ieee
ISSN :
1939-1404
Type :
jour
DOI :
10.1109/JSTARS.2012.2213239
Filename :
6332547
Link To Document :
بازگشت