DocumentCode
586332
Title
Power Savings and Performance Analysis in Wireless Networks
Author
Boulmalf, M. ; Aouam, T. ; Ghogho, M. ; Zaidi, S.A.R. ; Yaagoubi, N.
Author_Institution
Int. Univ. of Rabat, Rabat, Morocco
fYear
2012
fDate
3-6 Sept. 2012
Firstpage
1
Lastpage
5
Abstract
This paper investigates the effects of power saving strategies on the performance of wireless local area networks (WLANs). More specifically, a power management model is formulated as an integer linear program that the network planner can use in order to achieve power savings while maintaining an acceptable quality of service (QoS), measured by the signal to interference ratio (SIR) for interference limited WLAN. Furthermore, through a network simulation implemented in NS-2, it is shown that the adaptive power saving scheme can guarantee the same average throughput as the non-adaptive counterpart, while significantly reducing the total transmitted power. Considering a realistic scenario, we show that, using the proposed power management model, one can save about 55% of the transmitted power while the SIR is increased by 6 dB thus improving the QoS. Also, using a simple experiment with two access points it is shown that, in the case of users within the overlap of the two coverage areas, the throughput remains constant when the transmit power is changed from a low value to a high value although a minor degradation of the average delay is noticed. As a conclusion, the commonly assumed fact that increasing the transmit power results in better network performance is not necessarily true and can result as shown in this paper in energy waste.
Keywords
integer programming; interference (signal); linear programming; quality of service; telecommunication power supplies; wireless LAN; QoS; WLAN; integer linear program; interference; performance analysis; power savings; quality of service; wireless local area networks; Interference; Power control; Quality of service; Resource management; Throughput; Wireless LAN; Wireless communication;
fLanguage
English
Publisher
ieee
Conference_Titel
Vehicular Technology Conference (VTC Fall), 2012 IEEE
Conference_Location
Quebec City, QC
ISSN
1090-3038
Print_ISBN
978-1-4673-1880-8
Electronic_ISBN
1090-3038
Type
conf
DOI
10.1109/VTCFall.2012.6399367
Filename
6399367
Link To Document