• DocumentCode
    59178
  • Title

    Nature-Inspired Framework for Hyperspectral Band Selection

  • Author

    Nakamura, Rodrigo Yuji Mizobe ; Garcia Fonseca, Leila Maria ; dos Santos, Jefersson A. ; Da S Torres, Ricardo ; Xin-She Yang ; Papa Papa, Joao

  • Author_Institution
    Dept. of Comput., Sao Paulo State Univ., Bauru, Brazil
  • Volume
    52
  • Issue
    4
  • fYear
    2014
  • fDate
    Apr-14
  • Firstpage
    2126
  • Lastpage
    2137
  • Abstract
    Although hyperspectral images acquired by on-board satellites provide information from a wide range of wavelengths in the spectrum, the obtained information is usually highly correlated. This paper proposes a novel framework to reduce the computation cost for large amounts of data based on the efficiency of the optimum-path forest (OPF) classifier and the power of metaheuristic algorithms to solve combinatorial optimizations. Simulations on two public data sets have shown that the proposed framework can indeed improve the effectiveness of the OPF and considerably reduce data storage costs.
  • Keywords
    geophysical image processing; geophysical techniques; hyperspectral imaging; image classification; vegetation; combinatorial optimizations; computation cost; data storage costs; hyperspectral band selection; hyperspectral images; metaheuristic algorithm power; nature-inspired framework; optimum-path forest classifier; Evolutionary computation; heuristic algorithms; hyperspectral imaging; image classification; pattern recognition;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2013.2258351
  • Filename
    6515634