• DocumentCode
    595175
  • Title

    Composite likelihood estimation for restricted Boltzmann machines

  • Author

    Yasuda, Makoto ; Kataoka, S. ; Waizumi, Y. ; Tanaka, Kiyoshi

  • Author_Institution
    Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan
  • fYear
    2012
  • fDate
    11-15 Nov. 2012
  • Firstpage
    2234
  • Lastpage
    2237
  • Abstract
    Generally, learning the parameters of graphical models by using the maximum likelihood estimation is difficult and requires an approximation. Maximum composite likelihood estimations are statistical approximations of the maximum likelihood estimation and are higher-order generalizations of the maximum pseudo-likelihood estimation. In this paper, we propose a composite likelihood method and investigate its properties. Furthermore, we apply this to restricted Boltzmann machines.
  • Keywords
    Boltzmann machines; approximation theory; higher order statistics; maximum likelihood estimation; solid modelling; graphical models; higher order generalization; maximum composite likelihood estimation; maximum pseudolikelihood estimation; restricted Boltzmann machine; statistical approximation; Computational efficiency; Equations; Graphical models; Learning systems; Maximum likelihood estimation; Systematics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ICPR), 2012 21st International Conference on
  • Conference_Location
    Tsukuba
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4673-2216-4
  • Type

    conf

  • Filename
    6460608