DocumentCode
596154
Title
Incorporating Expert Judgment into Regression Models of Software Effort Estimation
Author
Tsunoda, Masafumi ; Monden, Akito ; Keung, Jacky ; Matsumoto, Kaname
Author_Institution
Fac. of Inf. Sci. & Arts, Toyo Univ., Saitama, Japan
Volume
1
fYear
2012
fDate
4-7 Dec. 2012
Firstpage
374
Lastpage
379
Abstract
One of the common problems in building an effort estimation model is that not all the effort factors are suitable as predictor variables. As a supplement of missing information in estimation models, this paper explores the project manager´s knowledge about the target project. We assume that the experts can judge the target project´s productivity level based on his/her own expert knowledge about the project. We also assume that this judgment can be further improved, because using the expert´s judgment solely could incur subjective perception. This paper proposes a regression model building/selection method to address this challenge. In the proposed method, a fit dataset for model building is divided into two or three subsets by project productivity, and an estimation model is built on each data subset. The expert judges the productivity level of the target project and selects one of the models to be used. In the experiment, we used three datasets to evaluate the produced effort estimation models. In the experiment, we adjusted the error rate of the judgment and analyzed the relationship between the error rate and the estimation accuracy. As a result, the judgment-incorporating models produced significantly higher estimation accuracy than the conventional linear regression model, where the expert´s error rate is less than 37%.
Keywords
regression analysis; software cost estimation; software development management; expert judgment; judgment-incorporating model; linear regression model; predictor variable; project manager; project productivity; project productivity level; regression model building method; regression model selection method; software effort estimation; subjective perception; Software engineering; Estimation error; Expert Judgment; Productivity; Project Management; Software Effort Estimation; Stratification;
fLanguage
English
Publisher
ieee
Conference_Titel
Software Engineering Conference (APSEC), 2012 19th Asia-Pacific
Conference_Location
Hong Kong
ISSN
1530-1362
Print_ISBN
978-1-4673-4930-7
Type
conf
DOI
10.1109/APSEC.2012.58
Filename
6462683
Link To Document