• DocumentCode
    60709
  • Title

    Design of IIR Filters With Bayesian Model Selection and Parameter Estimation

  • Author

    Botts, Jonathan ; Escolano, J. ; Ning Xiang

  • Author_Institution
    Grad. Program in Archit. Acoust., Rensselaer Polytech. Inst., Troy, NY, USA
  • Volume
    21
  • Issue
    3
  • fYear
    2013
  • fDate
    Mar-13
  • Firstpage
    669
  • Lastpage
    674
  • Abstract
    Bayesian model selection and parameter estimation are used to address the problem of choosing the most concise filter order for a given application while simultaneously determining the associated filter coefficients. This approach is validated against simulated data and used to generate pole-zero representations of head-related transfer functions.
  • Keywords
    IIR filters; parameter estimation; Bayesian model selection; IIR filters design; concise Illter order; head-related transfer functions; parameter estimation; pole-zero representations; Autoregressive processes; Bayesian methods; Data models; Frequency domain analysis; Mathematical model; Parameter estimation; Transfer functions; Bayesian methods; IIR filters; Monte Carlo methods; head-related transfer function; model comparison; parameter estimation;
  • fLanguage
    English
  • Journal_Title
    Audio, Speech, and Language Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1558-7916
  • Type

    jour

  • DOI
    10.1109/TASL.2012.2226159
  • Filename
    6338273