• DocumentCode
    609646
  • Title

    A distributed thread scheduler for dynamic multithreading on throughput processors

  • Author

    Ta-Kan Yen ; Hsien-Kai Kuo ; Lai, Bo-Cheng Charles

  • Author_Institution
    Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
  • fYear
    2013
  • fDate
    22-24 April 2013
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    GPGPUs have emerged as one of the most widely used throughput processors. Deep multithreading and cache hierarchy are the two effective implementations to achieve high throughput computing in modern GPGPUs. However, these are two conflicting design options. Finding a proper design point between the two has become a significant performance factor to GPGPUs. This paper proposes a distributed thread scheduler for dynamic multithreading on GPGPUs. By demonstrating the trade-off issue between the multithreading and cache contention, the proposed scheduler dynamically adjusts the multithreading degree to achieve superior performance. With the proposed scheduler, the cache misses can be decreased by 20.6% and 37.9% on the L1 and L2 cache respectively. The overall performance can be enhanced by an average of 16.4%.
  • Keywords
    graphics processing units; multi-threading; processor scheduling; GPGPU; cache contention; cache hierarchy; distributed thread scheduler; dynamic multithreading; general purpose graphic processing units; throughput processors; Graphics processing units; Instruction sets; Multithreading; Runtime; Throughput; Tuning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    VLSI Design, Automation, and Test (VLSI-DAT), 2013 International Symposium on
  • Conference_Location
    Hsinchu
  • Print_ISBN
    978-1-4673-4435-7
  • Type

    conf

  • DOI
    10.1109/VLDI-DAT.2013.6533822
  • Filename
    6533822