• DocumentCode
    618079
  • Title

    Biased random-key genetic algorithm for nonlinearly-constrained global optimization

  • Author

    Silva, Ricardo M. A. ; Resende, M.G.C. ; Pardalos, Panos M. ; Faco, Joao L.

  • Author_Institution
    Centro de Inf., Univ. Fed. de Pernambuco, Recife, Brazil
  • fYear
    2013
  • fDate
    20-23 June 2013
  • Firstpage
    2201
  • Lastpage
    2206
  • Abstract
    Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a biased random key genetic algorithm for finding approximate solutions for bound-constrained continuous global optimization problems subject to nonlinear constraints. Experimental results illustrate its effectiveness on some functions from CEC2006 benchmark (Liang et al. [2006]).
  • Keywords
    genetic algorithms; nonlinear programming; biased random-key genetic algorithm; bound-constrained continuous global optimization problems; continuous domain; discrete domain; multimodal function; nonlinearly-constrained global optimization; Decoding; Genetic algorithms; Linear programming; Optimization; Sociology; Statistics; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation (CEC), 2013 IEEE Congress on
  • Conference_Location
    Cancun
  • Print_ISBN
    978-1-4799-0453-2
  • Electronic_ISBN
    978-1-4799-0452-5
  • Type

    conf

  • DOI
    10.1109/CEC.2013.6557830
  • Filename
    6557830