DocumentCode :
622633
Title :
Improved system identification with renormalization group
Author :
Qing-Guo Wang ; Chao Yu ; Yong Zhang
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
fYear :
2013
fDate :
12-14 June 2013
Firstpage :
878
Lastpage :
883
Abstract :
This paper proposes an improved system identification method with Renormalization Group. Renormalization Group is applied to a fine data set to obtain a coarse data set. The least-squares algorithm is performed on the coarse data set. The theoretical analysis under certain conditions shows that the parameter estimation error could be reduced. The proposed method is illustrated with examples.
Keywords :
least squares approximations; parameter estimation; coarse data set; least-squares algorithm; parameter estimation error; renormalization group; system identification; theoretical analysis; Analytical models; Educational institutions; Electronic mail; Estimation error; Least squares approximations; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Automation (ICCA), 2013 10th IEEE International Conference on
Conference_Location :
Hangzhou
ISSN :
1948-3449
Print_ISBN :
978-1-4673-4707-5
Type :
conf
DOI :
10.1109/ICCA.2013.6565089
Filename :
6565089
Link To Document :
بازگشت