DocumentCode
62769
Title
Grobner Bases for Lattices and an Algebraic Decoding Algorithm
Author
Aliasgari, M. ; Sadeghi, Mohammadreza ; Panario, Daniel
Volume
61
Issue
4
fYear
2013
fDate
Apr-13
Firstpage
1222
Lastpage
1230
Abstract
In this paper we present Grobner bases for lattices given in a general form, including integer and non-integer lattices. Grdot{o}bner bases for binary linear codes were introduced by Borges-Quintana et al. . We extend their work to non-binary group block codes. Then, given a lattice Λ and its associated label code L, which is a group code, we define an ideal for L. A Grobner basis is assigned to Λ as the Grobner basis of its label code L. Since the associated label code for integer and non-integer lattices are group codes, the assigned Grobner bases can be obtained for both cases. Using this Grobner basis an algebraic decoding algorithm is introduced. We provide an example of the decoding method for a lower dimension lattice. We explain that the complexity of this decoding method depends on the division algorithm and show this decoding method has polynomial time complexity. Experiments for some versions of root lattices (E_7 and E_8) show that for low SNR the performance of these lattices is near to the lower bounds given in .
Keywords
algebraic codes; binary codes; linear codes; polynomials; Grobner bases; SNR; algebraic decoding algorithm; associated label code L; binary linear codes; decoding method; integer lattices; lower dimension lattice; nonbinary group block codes; noninteger lattices; polynomial time complexity; Generators; Lattices; Maximum likelihood decoding; Polynomials; Vectors; Zinc; Grobner bases; division algorithm; label code; lattices;
fLanguage
English
Journal_Title
Communications, IEEE Transactions on
Publisher
ieee
ISSN
0090-6778
Type
jour
DOI
10.1109/TCOMM.2013.13.120317
Filename
6466341
Link To Document