• DocumentCode
    640476
  • Title

    Shape model fitting using non-isotropic GMM

  • Author

    Arellano, C. ; Dahyot, Rozenn

  • Author_Institution
    Sch. of Comput. Sci. & Stat., Trinity Coll. Dublin, Dublin, Ireland
  • fYear
    2012
  • fDate
    28-29 June 2012
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    We present a Mean Shift algorithm for fitting shape models. This algorithm maximises a posterior density function where the likelihood is defined as the Euclidean distance between two Gaussian mixture density functions, one modelling the observations while the other corresponds to the shape model. We explore the role of the covariance matrix in the Gaussian kernel for encoding the shape of the model in the density function. Results show that using non-isotropic covariance matrices improve the efficiency of the algorithm and allow to reduce the number of kernels to use in the mixture without compromising the robustness of the algorithm.
  • Keywords
    Gaussian processes; covariance matrices; solid modelling; Euclidean distance; Gaussian kernel; Gaussian mixture density functions; mean shift algorithm; nonisotropic GMM; nonisotropic covariance matrices; posterior density function; shape model fitting; Fitting Algorithm; Gaussian Mixture Models; Mean Shift; Morphable Models;
  • fLanguage
    English
  • Publisher
    iet
  • Conference_Titel
    Signals and Systems Conference (ISSC 2012), IET Irish
  • Conference_Location
    Maynooth
  • Electronic_ISBN
    978-1-84919-613-0
  • Type

    conf

  • DOI
    10.1049/ic.2012.0196
  • Filename
    6621175