• DocumentCode
    643464
  • Title

    A tuning procedure for ARX-based MPC

  • Author

    Olesen, Daniel Haugaard ; Huusom, Jakob Kjobsted ; Jogensen, John Bagterp

  • Author_Institution
    DTU Comput., Tech. Univ. of Denmark, Lyngby, Denmark
  • fYear
    2013
  • fDate
    28-30 Aug. 2013
  • Firstpage
    188
  • Lastpage
    193
  • Abstract
    We present an optimization based tuning procedure with certain robustness properties for an offset free Model Predictive Controller (MPC). The MPC is designed for univariate processes that can be represented by an ARX model. The advantage of ARX model representations is that standard system identification techniques using convex optimization can be used for identification of such models from input-output data. The stochastic model of the ARX model identified from input-output data is modified with an ARMA model designed as part of the MPC-design procedure to ensure offset-free control. The ARMAX model description resulting from the extension can be realized as a state space model in innovation form. The MPC is designed and implemented based on this state space model in innovation form. Expressions for the closed-loop dynamics of the unconstrained system is used to derive the sensitivity function of this system. The closed-loop expressions are also used to numerically evaluate absolute integral performance measures. Due to the closed-loop expressions, these evaluations can be done relative quickly. Consequently, the tuning may be performed by numerical minimization of the integrated absolute error subject to the a constraint on the maximum of the sensitivity function. The latter constraint provides a robustness measure that is essential for the procedure.
  • Keywords
    closed loop systems; control system synthesis; identification; optimisation; predictive control; state-space methods; stochastic processes; ARMA model; ARX-based MPC; MPC-design procedure; closed-loop dynamics; convex optimization; input-output data; offset free model predictive controller; optimization based tuning procedure; standard system identification techniques; state space model; stochastic model; unconstrained system; univariate process; Aerospace electronics; Closed loop systems; Process control; Robustness; Sensitivity; Technological innovation; Tuning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Aided Control System Design (CACSD), 2013 IEEE Conference on
  • Conference_Location
    Hyderabad
  • Type

    conf

  • DOI
    10.1109/CACSD.2013.6663481
  • Filename
    6663481