DocumentCode
65417
Title
Gaussian Particle Filtering Approach for Carrier Frequency Offset Estimation in OFDM Systems
Author
Jaechan Lim ; Daehyoung Hong
Author_Institution
Dept. of Creative IT Excellence Eng., Pohang Univ. ersity of Sci. & Technol., Pohang, South Korea
Volume
20
Issue
4
fYear
2013
fDate
Apr-13
Firstpage
367
Lastpage
370
Abstract
We propose Gaussian particle filtering (PF) approach for estimating carrier frequency offset (CFO) in OFDM systems. PF is more powerful especially for nonlinear problems where classical approaches (e.g., maximum likelihood estimators) may not show optimal performance. Standard PF undergoes the particle impoverishment (PI) problem resulting from resampling process for this static parameter (i.e., CFO) estimation. Gaussian PF (GPF) avoids the PI problem because resampling process is not needed in the algorithm. We show that GPF outperforms current approaches in this nonlinear estimation problem.
Keywords
OFDM modulation; maximum likelihood estimation; nonlinear estimation; particle filtering (numerical methods); Gaussian particle filtering; OFDM systems; carrier frequency offset estimation; maximum likelihood estimators; nonlinear estimation problem; nonlinear problems; particle impoverishment problem; static parameter estimation; Equations; Kernel; Mathematical model; Maximum likelihood estimation; Noise; OFDM; Carrier frequency offset; Gaussian particle filtering; OFDM; particle impoverishment;
fLanguage
English
Journal_Title
Signal Processing Letters, IEEE
Publisher
ieee
ISSN
1070-9908
Type
jour
DOI
10.1109/LSP.2013.2248148
Filename
6468071
Link To Document