• DocumentCode
    657964
  • Title

    Online identification RKPCA-RN

  • Author

    Souilem, Nadia ; Elaissi, Ilyes ; Okba, Taouali ; Messaoud, Hassani

  • Author_Institution
    Unite de Rech. d´Autom., Ecole Nat. d´Ingenieur, Monastir, Tunisia
  • fYear
    2013
  • fDate
    6-8 May 2013
  • Firstpage
    185
  • Lastpage
    190
  • Abstract
    This paper proposes a new method for online identification of a nonlinear system using Reproducing Kernel Hilbert Space (RKHS) models. The RKHS model is a linear combination of kernel functions applied to the used training set observations. For large datasets, this kernel based to severs computational problems and makes identification techniques unsuitable to the online case. For instance, in the Kernel Principal Component Analysis (KPCA) scheme the Gram matrix order grows with the number of training observations and its eigen decomposition. The proposed method is based on Reduced Kernel Principal Component Analysis technique (RKPCA), to extract the principal component will be time consuming.
  • Keywords
    Hilbert spaces; eigenvalues and eigenfunctions; matrix algebra; nonlinear control systems; principal component analysis; Gram matrix order; KPCA scheme; RKHS model; RKPCA-RN; eigen decomposition; kernel function; linear combination; nonlinear system; online identification; reduced kernel principal component analysis; reproducing kernel Hilbert space; Eigenvalues and eigenfunctions; Hilbert space; Kernel; Linear systems; Nonlinear systems; Principal component analysis; Vectors; Kernel method; Online RKPCA-RN; RKHS; RKPCA;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control, Decision and Information Technologies (CoDIT), 2013 International Conference on
  • Conference_Location
    Hammamet
  • Print_ISBN
    978-1-4673-5547-6
  • Type

    conf

  • DOI
    10.1109/CoDIT.2013.6689541
  • Filename
    6689541