• DocumentCode
    658013
  • Title

    A new ARIV identification algorithm for stochastic reduced complexty Volterra model

  • Author

    Laamiri, Imen ; Khouaja, Anis ; Messaoud, Hassani

  • Author_Institution
    Electr. Eng. Dept., ENIM, Monastir, Tunisia
  • fYear
    2013
  • fDate
    6-8 May 2013
  • Firstpage
    470
  • Lastpage
    475
  • Abstract
    This paper proposes a stochastic identification algorithm of a model describing non linear stochastic system. The identified model, known as SVD-PARAFAC-Volterra model, results from tensor decomposition of kernels of classical Volterra model. The proposed algorithm uses the Recursive Instrumental Variable (RIV) method in alternating way to estimate the model parameters of the model. The algorithm validation is ensured by simulation results.
  • Keywords
    Volterra series; computational complexity; nonlinear systems; parameter estimation; singular value decomposition; stochastic systems; tensors; ARIV identification algorithm; SVD-PARAFAC-Volterra model; alternating recursive instrumental variable; classical Volterra model kernel tensor decomposition; model parameter estimation; nonlinear stochastic system; stochastic identification algorithm; stochastic reduced complexity Volterra model; Instruments; Mathematical model; Matrix decomposition; Stochastic processes; Tensile stress; Vectors; Writing; PARAFAC; RIV; Volterra model; identification; non-linear stochastic system;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control, Decision and Information Technologies (CoDIT), 2013 International Conference on
  • Conference_Location
    Hammamet
  • Print_ISBN
    978-1-4673-5547-6
  • Type

    conf

  • DOI
    10.1109/CoDIT.2013.6689590
  • Filename
    6689590