• DocumentCode
    660798
  • Title

    Entity Matching in Online Social Networks

  • Author

    Peled, Olga ; Fire, Michael ; Rokach, L. ; Elovici, Yuval

  • Author_Institution
    Dept. of Inf. Syst. Eng., Ben Gurion Univ., Beer-Sheva, Israel
  • fYear
    2013
  • fDate
    8-14 Sept. 2013
  • Firstpage
    339
  • Lastpage
    344
  • Abstract
    In recent years, Online Social Networks (OSNs) have essentially become an integral part of our daily lives. There are hundreds of OSNs, each with its own focus and offers for particular services and functionalities. To take advantage of the full range of services and functionalities that OSNs offer, users often create several accounts on various OSNs using the same or different personal information. Retrieving all available data about an individual from several OSNs and merging it into one profile can be useful for many purposes. In this paper, we present a method for solving the Entity Resolution (ER), problem for matching user profiles across multiple OSNs. Our algorithm is able to match two user profiles from two different OSNs based on machine learning techniques, which uses features extracted from each one of the user profiles. Using supervised learning techniques and extracted features, we constructed different classifiers, which were then trained and used to rank the probability that two user profiles from two different OSNs belong to the same individual. These classifiers utilized 27 features of mainly three types: name based features (i.e., the Soundex value of two names), general user info based features (i.e., the cosine similarity between two user profiles), and social network topological based features (i.e., the number of mutual friends between two users´ friends list). This experimental study uses real-life data collected from two popular OSNs, Facebook and Xing. The proposed algorithm was evaluated and its classification performance measured by AUC was 0.982 in identifying user profiles across two OSNs.
  • Keywords
    information retrieval; learning (artificial intelligence); social networking (online); topology; AUC; ER; Facebook; OSN; Xing; available data retrieval; entity matching; entity resolution; extracted features; machine learning techniques; online social networks; personal information; social network topological based features; supervised learning techniques; user profile matching; Crawlers; Erbium; Facebook; Feature extraction; Training; Vectors; Entity Resolution; Machine Learning; Online Social Networks;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Social Computing (SocialCom), 2013 International Conference on
  • Conference_Location
    Alexandria, VA
  • Type

    conf

  • DOI
    10.1109/SocialCom.2013.53
  • Filename
    6693350